(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, a(b(y))) → f(c(d(x)), y)
f(c(x), y) → f(x, a(y))
f(d(x), y) → f(x, b(y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(x, a(b(y))) →+ f(c(d(x)), y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [y / a(b(y))].
The result substitution is [x / c(d(x))].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, a(b(y))) → f(c(d(x)), y)
f(c(x), y) → f(x, a(y))
f(d(x), y) → f(x, b(y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(x, a(b(y))) → f(c(d(x)), y)
f(c(x), y) → f(x, a(y))
f(d(x), y) → f(x, b(y))
Types:
f :: d:c → b:a → f
a :: b:a → b:a
b :: b:a → b:a
c :: d:c → d:c
d :: d:c → d:c
hole_f1_0 :: f
hole_d:c2_0 :: d:c
hole_b:a3_0 :: b:a
gen_d:c4_0 :: Nat → d:c
gen_b:a5_0 :: Nat → b:a
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
x,
a(
b(
y))) →
f(
c(
d(
x)),
y)
f(
c(
x),
y) →
f(
x,
a(
y))
f(
d(
x),
y) →
f(
x,
b(
y))
Types:
f :: d:c → b:a → f
a :: b:a → b:a
b :: b:a → b:a
c :: d:c → d:c
d :: d:c → d:c
hole_f1_0 :: f
hole_d:c2_0 :: d:c
hole_b:a3_0 :: b:a
gen_d:c4_0 :: Nat → d:c
gen_b:a5_0 :: Nat → b:a
Generator Equations:
gen_d:c4_0(0) ⇔ hole_d:c2_0
gen_d:c4_0(+(x, 1)) ⇔ c(gen_d:c4_0(x))
gen_b:a5_0(0) ⇔ hole_b:a3_0
gen_b:a5_0(+(x, 1)) ⇔ a(gen_b:a5_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_d:c4_0(
+(
1,
n7_0)),
gen_b:a5_0(
b)) →
*6_0, rt ∈ Ω(n7
0)
Induction Base:
f(gen_d:c4_0(+(1, 0)), gen_b:a5_0(b))
Induction Step:
f(gen_d:c4_0(+(1, +(n7_0, 1))), gen_b:a5_0(b)) →RΩ(1)
f(gen_d:c4_0(+(1, n7_0)), a(gen_b:a5_0(b))) →IH
*6_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
x,
a(
b(
y))) →
f(
c(
d(
x)),
y)
f(
c(
x),
y) →
f(
x,
a(
y))
f(
d(
x),
y) →
f(
x,
b(
y))
Types:
f :: d:c → b:a → f
a :: b:a → b:a
b :: b:a → b:a
c :: d:c → d:c
d :: d:c → d:c
hole_f1_0 :: f
hole_d:c2_0 :: d:c
hole_b:a3_0 :: b:a
gen_d:c4_0 :: Nat → d:c
gen_b:a5_0 :: Nat → b:a
Lemmas:
f(gen_d:c4_0(+(1, n7_0)), gen_b:a5_0(b)) → *6_0, rt ∈ Ω(n70)
Generator Equations:
gen_d:c4_0(0) ⇔ hole_d:c2_0
gen_d:c4_0(+(x, 1)) ⇔ c(gen_d:c4_0(x))
gen_b:a5_0(0) ⇔ hole_b:a3_0
gen_b:a5_0(+(x, 1)) ⇔ a(gen_b:a5_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_d:c4_0(+(1, n7_0)), gen_b:a5_0(b)) → *6_0, rt ∈ Ω(n70)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
x,
a(
b(
y))) →
f(
c(
d(
x)),
y)
f(
c(
x),
y) →
f(
x,
a(
y))
f(
d(
x),
y) →
f(
x,
b(
y))
Types:
f :: d:c → b:a → f
a :: b:a → b:a
b :: b:a → b:a
c :: d:c → d:c
d :: d:c → d:c
hole_f1_0 :: f
hole_d:c2_0 :: d:c
hole_b:a3_0 :: b:a
gen_d:c4_0 :: Nat → d:c
gen_b:a5_0 :: Nat → b:a
Lemmas:
f(gen_d:c4_0(+(1, n7_0)), gen_b:a5_0(b)) → *6_0, rt ∈ Ω(n70)
Generator Equations:
gen_d:c4_0(0) ⇔ hole_d:c2_0
gen_d:c4_0(+(x, 1)) ⇔ c(gen_d:c4_0(x))
gen_b:a5_0(0) ⇔ hole_b:a3_0
gen_b:a5_0(+(x, 1)) ⇔ a(gen_b:a5_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_d:c4_0(+(1, n7_0)), gen_b:a5_0(b)) → *6_0, rt ∈ Ω(n70)
(16) BOUNDS(n^1, INF)